Experience-Dependent, Rapid Structural Changes in Hippocampal Pyramidal Cell Spines
نویسندگان
چکیده
Morphological changes in dendritic spines may contribute to the fine tuning of neural network connectivity. The relationship between spine morphology and experience-dependent neuronal activity, however, is largely unknown. In the present study, we combined 2 histological analyses to examine this relationship: 1) Measurement of spines of neurons whose morphology was visualized in brain sections of mice expressing membrane-targeted green fluorescent protein (Thy1-mGFP mice) and 2) Categorization of CA1 neurons by immunohistochemical monitoring of Arc expression as a putative marker of recent neuronal activity. After mice were exposed to a novel, enriched environment for 60 min, neurons that expressed Arc had fewer small spines and more large spines than Arc-negative cells. These differences were not observed when the exploration time was shortened to 15 min. This net-balanced structural change is consistent with both synapse-specific enhancement and suppression. These results provide the first evidence of rapid morphological changes in spines that were preferential to a subset of neurons in association with an animal's experiences.
منابع مشابه
Morphological Changes in Hippocampal Ca1 Area in Diabetic Rats: A Golgi-impregnation Study
Background and Objective: Although diabetes mellitus is known to be one of the risk factors for dementia but neuropathic changes in the brain of diabetic patients have not been completely revealed. Therefore, this research study was done to evaluate structural changes in pyramidal neurons of hippocampal ...
متن کاملLong Lasting Protein Synthesis- and Activity-Dependent Spine Shrinkage and Elimination after Synaptic Depression
Neuronal circuits modify their response to synaptic inputs in an experience-dependent fashion. Increases in synaptic weights are accompanied by structural modifications, and activity dependent, long lasting growth of dendritic spines requires new protein synthesis. When multiple spines are potentiated within a dendritic domain, they show dynamic structural plasticity changes, indicating that sp...
متن کاملStructural changes at synapses after delayed perfusion fixation in different regions of the mouse brain.
We recently showed by electron microscopy that the postsynaptic density (PSD) from hippocampal cultures undergoes rapid structural changes after ischemia-like conditions. Here we report that similar structural changes occur after delay in transcardial perfusion fixation of the mouse brain. Delay in perfusion fixation, a condition that mimics ischemic stress, resulted in 70%, 90%, and 23% increa...
متن کاملReproductive experience modified dendritic spines on cortical pyramidal neurons to enhance sensory perception and spatial learning in rats
Behavioral adaptations during motherhood are aimed at increasing reproductive success. Alterations of hormones during motherhood could trigger brain morphological changes to underlie behavioral alterations. Here we investigated whether motherhood changes a rat's sensory perception and spatial memory in conjunction with cortical neuronal structural changes. Female rats of different statuses, inc...
متن کاملHigh-resolution in vivo imaging of hippocampal dendrites and spines.
Structural changes in hippocampal dendrites and dendritic spines are thought to be a consequence of a wide range of experience- and activity-dependent manipulations. We explored the dynamics of hippocampal dendritic spines in vivo by developing a surgical preparation of the adult mouse brain that enabled two-photon imaging of fluorescently labeled CA1 pyramidal neurons. Dendritic trees and spin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 19 شماره
صفحات -
تاریخ انتشار 2009